3.2.58 \(\int \sec (c+d x) \sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [158]

3.2.58.1 Optimal result
3.2.58.2 Mathematica [A] (verified)
3.2.58.3 Rubi [A] (verified)
3.2.58.4 Maple [A] (verified)
3.2.58.5 Fricas [A] (verification not implemented)
3.2.58.6 Sympy [F]
3.2.58.7 Maxima [F]
3.2.58.8 Giac [F]
3.2.58.9 Mupad [B] (verification not implemented)

3.2.58.1 Optimal result

Integrand size = 33, antiderivative size = 95 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a (15 A+7 C) \tan (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}-\frac {4 C \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 a d} \]

output
2/5*C*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/a/d+2/15*a*(15*A+7*C)*tan(d*x+c)/d 
/(a+a*sec(d*x+c))^(1/2)-4/15*C*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.2.58.2 Mathematica [A] (verified)

Time = 0.58 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.58 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a \left (15 A+8 C+4 C \sec (c+d x)+3 C \sec ^2(c+d x)\right ) \tan (c+d x)}{15 d \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]
 
output
(2*a*(15*A + 8*C + 4*C*Sec[c + d*x] + 3*C*Sec[c + d*x]^2)*Tan[c + d*x])/(1 
5*d*Sqrt[a*(1 + Sec[c + d*x])])
 
3.2.58.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3042, 4571, 27, 3042, 4489, 3042, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) \sqrt {a \sec (c+d x)+a} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4571

\(\displaystyle \frac {2 \int \frac {1}{2} \sec (c+d x) \sqrt {\sec (c+d x) a+a} (a (5 A+3 C)-2 a C \sec (c+d x))dx}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec (c+d x) \sqrt {\sec (c+d x) a+a} (a (5 A+3 C)-2 a C \sec (c+d x))dx}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (5 A+3 C)-2 a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {1}{3} a (15 A+7 C) \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx-\frac {4 a C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} a (15 A+7 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-\frac {4 a C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {\frac {2 a^2 (15 A+7 C) \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}-\frac {4 a C \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

input
Int[Sec[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]
 
output
(2*C*(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*a*d) + ((2*a^2*(15*A + 7* 
C)*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) - (4*a*C*Sqrt[a + a*Sec[c 
+ d*x]]*Tan[c + d*x])/(3*d))/(5*a)
 

3.2.58.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4571
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[ 
(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x] 
*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   In 
t[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) - a*C* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] &&  !LtQ[m, -1]
 
3.2.58.4 Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.75

method result size
default \(\frac {2 \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (15 A \sin \left (d x +c \right )+8 C \sin \left (d x +c \right )+4 C \tan \left (d x +c \right )+3 C \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right )}\) \(71\)
parts \(-\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{d}+\frac {2 C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (8 \sin \left (d x +c \right )+4 \tan \left (d x +c \right )+3 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right )}\) \(94\)

input
int(sec(d*x+c)*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
2/15/d*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*(15*A*sin(d*x+c)+8*C*sin(d* 
x+c)+4*C*tan(d*x+c)+3*C*sec(d*x+c)*tan(d*x+c))
 
3.2.58.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.85 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left ({\left (15 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, C \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorith 
m="fricas")
 
output
2/15*((15*A + 8*C)*cos(d*x + c)^2 + 4*C*cos(d*x + c) + 3*C)*sqrt((a*cos(d* 
x + c) + a)/cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^3 + d*cos(d*x + c)^ 
2)
 
3.2.58.6 Sympy [F]

\[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a*(sec(c + d*x) + 1))*(A + C*sec(c + d*x)**2)*sec(c + d*x), 
x)
 
3.2.58.7 Maxima [F]

\[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \]

input
integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorith 
m="maxima")
 
output
2/15*(15*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1 
)^(1/4)*((A*d*cos(2*d*x + 2*c)^2 + A*d*sin(2*d*x + 2*c)^2 + 2*A*d*cos(2*d* 
x + 2*c) + A*d)*integrate((((cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 3*cos(6*d 
*x + 6*c)*cos(2*d*x + 2*c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d 
*x + 2*c)^2 + sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6*c)*sin(2 
*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*co 
s(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin 
(8*d*x + 8*c) + 3*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*s 
in(4*d*x + 4*c) - cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 3*cos(6*d*x + 6*c)*s 
in(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(5/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 3*cos(2*d*x + 2* 
c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(8*d*x + 8* 
c)*sin(2*d*x + 2*c) - 3*cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 3*cos(4*d*x + 
4*c)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)) 
) - (cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 3*cos(6*d*x + 6*c)*cos(2*d*x + 2* 
c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(8*d*x 
+ 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 3*sin(4*d* 
x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(5/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x...
 
3.2.58.8 Giac [F]

\[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \]

input
integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorith 
m="giac")
 
output
sage0*x
 
3.2.58.9 Mupad [B] (verification not implemented)

Time = 21.07 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.92 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {2\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}-1\right )\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (A\,15{}\mathrm {i}+C\,8{}\mathrm {i}+A\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,30{}\mathrm {i}+A\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,15{}\mathrm {i}+C\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,8{}\mathrm {i}+C\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,28{}\mathrm {i}+C\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,8{}\mathrm {i}+C\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,8{}\mathrm {i}\right )}{15\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2} \]

input
int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2))/cos(c + d*x),x)
 
output
-(2*(exp(c*1i + d*x*1i) - 1)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d 
*x*1i)/2))^(1/2)*(A*15i + C*8i + A*exp(c*2i + d*x*2i)*30i + A*exp(c*4i + d 
*x*4i)*15i + C*exp(c*1i + d*x*1i)*8i + C*exp(c*2i + d*x*2i)*28i + C*exp(c* 
3i + d*x*3i)*8i + C*exp(c*4i + d*x*4i)*8i))/(15*d*(exp(c*1i + d*x*1i) + 1) 
*(exp(c*2i + d*x*2i) + 1)^2)